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a b s t r a c t 

The impressive growth of smartphone devices in combination with the rising ubiquity of using mobile 

platforms for sensitive applications such as Internet banking, have triggered a rapid increase in mobile 

malware. In recent literature, many studies examine Machine Learning techniques, as the most promising 

approach for mobile malware detection, without however quantifying the uncertainty involved in their 

detections. In this paper, we address this problem by proposing a machine learning dynamic analysis 

approach that provides provably valid confidence guarantees in each malware detection. Moreover the 

particular guarantees hold for both the malicious and benign classes independently and are unaffected 

by any bias in the data. The proposed approach is based on a novel machine learning framework, called 

Conformal Prediction, combined with a random forests classifier. We examine its performance on a large- 

scale dataset collected by installing 1866 malicious and 4816 benign applications on a real android device. 

We make this collection of dynamic analysis data available to the research community. The obtained 

experimental results demonstrate the empirical validity, usefulness and unbiased nature of the outputs 

produced by the proposed approach. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The evolution of ubiquitous smartphone devices has given rise

o great opportunities with respect to the development of appli-

ations and services spanning from simple messaging and calling

pplications to more sensitive financial transactions and Internet

anking services. As a result, a great deal of sensitive information,

uch as access passwords and credit card numbers, are stored on

martphone devices, which has made them a very attractive target

o cybercriminals. More specifically, a significant increase of mal-

are attacks was observed in the past few years, aiming at stealing

rivate information and sending it to unauthorized third-parties. 

Mobile malware are malicious software used to gather infor-

ation and/or gain access to mobile computer devices such as

martphones or tablets. In particular, they are packaged and re-

istributed with third-party applications to inject malicious con-

ent into a smartphone and therefore expose the device’s security.

hile the first one appeared in 2004 targeting the Nokia Symbian

S [1] , in the fourth quarter of 2015 G DATA security experts re-

orted discovering 8240 new malware applications on average per

ay and a total of 2.3 million new malware samples in 2015, in just

he Android OS [2] . When malware compromises a smartphone, it

an illegally watch and impersonate its user, participate in danger-
∗ Corresponding author. 
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us botnet activities without the user’s consent and capture user’s

ersonal data. 

Mobile malware detection techniques can be classified into two

ajor categories: static analysis [3,4] and dynamic analysis [5–7] .

he former aim at detecting suspicious patterns by inspecting the

ource code or binaries of applications. However, malware develop-

rs bypass static analysis by employing various obfuscation tech-

iques and therefore limiting their ability to detect polymorphic

alware, which change form in each instance of the malware [8] .

ynamic analysis techniques on the other hand, involve running

he application and analyzing its execution for suspicious behavior,

uch as system calls, network access as well as file and memory

odifications. The main drawback of these techniques is that it is

ifficult to determine when and under what conditions the mal-

are malicious code will be executed. 

Both static and dynamic analysis techniques are typically im-

lemented following two main approaches: signature-based ap-

roaches, which identify known malware based on unique sig-

atures [9] , and heuristic based approaches, which identify mali-

ious malware behavior based on rules developed by experts or

y employing machine learning techniques [4,7,10,11] . Even though

ignature-based techniques have been successfully adopted by an-

ivirus companies for malware detection in desktop applications,

his is not a preferred solution in the case of mobile devices

ue to their limited available resources in terms of power and

emory. Additionally, signature-based techniques cannot detect 

ero-day malware (not yet identified) or polymorphic malware,

https://doi.org/10.1016/j.neucom.2017.08.072
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.08.072&domain=pdf
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something that is not an issue for heuristic based techniques. On

the other hand, unlike signature-based techniques, heuristic based

techniques are prone to false positive detections (i.e. wrongly iden-

tifying an application as malware). 

Most recent research studies focus on extending the idea of

heuristic-based approaches by employing machine learning tech-

niques. For example, Sahs and Khan [12] use a one-class Support

Vector Machine to detect malicious applications based on features

extracted from Android Application Packages (APKs) of benign ap-

plications only. Demertzis and Iliadis [13] propose a hybrid method

that combines Extreme Learning Machines with Evolving Spiking

Neural Networks using features extracted from the behavior of ap-

plications when executed on an emulated Android environment.

In [14] the same authors propose an extension to the Android Run

Time Virtual Machine architecture that analyses the Java classes of

applications using the Biogeography-Based Optimizer (BBO) heuris-

tic algorithm for training a Multilayer Perceptron to classify ap-

plications as malicious or benign. Abah et. al. [15] present a de-

tection system that uses a k -Nearest Neighbor classifier to detect

malicious applications based on features extracted during execu-

tion. In a different kind of study Allix et. al. [16] study the gap

between in-the-lab and in-the-wild performance of malware detec-

tors. The authors propose a static analysis approach and evaluate

it on different settings showing that there is a huge performance

drop when malware detectors are tested in-the-wild . To the best

of our knowledge, none of the machine learning based methods

proposed in the literature provides any reliable indication on the

likelihood of its detections being correct. The provision of such an

indication however, would be of great value for the decision of the

user on whether to remove an application or not, depending on

the risk he/she is willing to take. 

A recent study by our group [17] examined the utilization of a

novel framework, called Conformal Prediction (CP) [18] , for quanti-

fying the uncertainty involved in machine learning Android Mal-

ware detection. Specifically, CP enabled the provision of provably

valid confidence guarantees for each individual prediction with-

out assuming anything more than that the data is exchangeable,

a somewhat weaker assumption than the universally accepted in

machine learning i.i.d. (independent and identically distributed

data) assumption. In effect CP transforms the single predictions

provided by conventional machine learning techniques into predic-

tion sets (or regions) with a guaranteed error rate, which is at most

one minus a pre-specified confidence level. However, the guaran-

tees provided by the standard CP framework hold over all instances

together and there is no assurance that they will hold on differ-

ent categories of instances [19] . As a result, the particular guar-

antees will hold over both malicious and benign predictions to-

gether, but no guarantee can be provided on malicious detections

alone. This is an important issue especially since the inherent class

imbalance of malware detection data can lead to a huge bias to-

wards the benign class. Additionally, our previous study was based

on dynamic analysis data collected in a controlled emulated en-

vironment, which is the typical scenario for studies performed on

the detection of Malware. 

The aim of this study is twofold: (i) To provide stronger guar-

antees that hold on malicious and benign instances separately and

thus are not biased towards one of the two classes; (ii) Evaluate

the performance of the proposed technique on a large-scale realis-

tic dataset. 

The first aim is achieved with the use of a modification of

the CP framework, called Label-conditional Mondrian CP (LCMCP),

which guarantees that the required confidence level will be satis-

fied within each class; i.e. the frequency of errors will be lower

than or equal to the required one for the instances of each class

separately. In fact we can even require a different confidence level

for each class. As the original CP and LCMCP versions of the
ramework are too computationally demanding for a mobile de-

ice application, we follow the inductive version of the CP frame-

ork, called Inductive Conformal Prediction [20] , with the Label-

onditional Mondrian modification. We combine Label-conditional

ondrian Inductive Conformal Prediction (LCMICP) with a random

orests (RF) classifier, which is one of the most popular machine

earning techniques. In our experiments we examine the perfor-

ance of the proposed RF-LCMICP approach and demonstrate its

ithin class validity and its superiority over the conventional RF

lassifier on which it is based. It should be noted that the proposed

CMICP approach is general in the sense that it can be used for ex-

ending any state of the art malware detection technique in order

o provide provably valid confidence guarantees. In fact, it can be

tilized for providing the same guarantees for any machine learn-

ng task involving class imbalance and computational efficiency

onsiderations (such as limited available computation resources or

arge volumes of data). Furthermore, since the only assumption

ade by the CP framework is that the data is exchangeable, the

alidity of the guarantees provided by the proposed approach is

ot affected by other typical machine learning issues such as out-

iers and overfitting. 

The second aim is accomplished by generating a dataset with

tate measurements of a real Android device (LG E400) during

imulation of random interaction with malicious and benign

pplications. The dataset consists of state measurements for

682 applications selected randomly from a large collection of

ndroid applications including a large variety of malware types.

he recorded data are made available to aid reproducibility of our

esults and further research. 

The rest of the paper starts with an overview of the Conformal

rediction framework and its Mondrian and inductive counterparts

n Section 2 . The next section ( Section 3 ) details the proposed ap-

roach. Section 4 describes the collection of the data used for eval-

ating our approach, while Section 5 presents our experiments and

he obtained results. Finally, Section 6 gives our conclusions and

irections for future work. 

. Conformal Prediction 

.1. The Conformal Prediction Framework 

The Conformal Prediction (CP) framework extends conventional

achine learning algorithms into techniques that produce reliable

onfidence measures with each of their predictions. The typical

lassification task consists of a training set { (x 1 , y 1 ) , . . . , (x l , y l ) }
f instances x i ∈ R 

d together with their associated classifications

 i ∈ { Y 1 , . . . , Y c } and a new unclassified instance x l+1 . The aim of

onformal Prediction is not only to find the most likely classifica-

ion for the unclassified instance, but to also state something about

ts confidence in each possible classification. 

CP does this by assigning each possible classification Y j , j =
 , . . . , c to x l+1 in turn and extending the training set with it, gen-

rating the set 

 (x 1 , y 1 ) , . . . , (x l , y l ) , (x l+1 , Y j ) } . (1)

t then measures how strange, or non-conforming, each pair ( x i , y i )

n (1) is for the rest of the examples in the same set. This is done

ith a non-conformity measure which is based on a conventional

achine learning algorithm, called the underlying algorithm of the

P. This measure assigns a numerical score α
(Y j ) 

i 
to each pair ( x i ,

 i ) indicating how much it disagrees with all other pairs in (1) .

n effect it measures the degree of disagreement between the pre-

iction of the underlying algorithm for x i after being trained on

1) with its actual label y i ; in the case of x l+1 , y l+1 is assumed to

e Y j . 
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To convert the non-conformity score α
(Y j ) 

l+1 
of (x l+1 , Y j ) into

omething informative, CP compares it with all the other non-

onformity scores α
(Y j ) 

i 
, i = 1 , . . . , l. This comparison is performed

ith the function 

p((x 1 , y 1 ) , . . . , (x l , y l ) , (x l+1 , Y j )) 

= 

|{ i = 1 , . . . , l : α
(Y j ) 

i 
≥ α

(Y j ) 

l+1 
}| + 1 

l + 1 

. (2) 

he output of this function, which lies between 

1 
l+1 

and 1, is called

he p -value of Y j , also denoted as p ( Y j ), as this is the only unknown

art of (1) . If the data are independent and identically distributed

i.i.d.), the output p(y l+1 ) for the true classification of x l+1 has the

roperty that ∀ δ ∈ [0, 1] and for all probability distributions P on

 , 

 

l+1 { ((x 1 , y 1 ) , . . . , (x l+1 , y l+1 )) : p(y l+1 ) ≤ δ} ≤ δ; (3)

or a proof see [21] . Therefore all classifications with a p -value un-

er some very low threshold, say 0.05, are highly unlikely to be

orrect as such sets will only be generated at most 5% of the time

y any i.i.d. process. 

Based on the property (3) , given a significance level δ, or confi-

ence level 1 − δ, a CP calculates the p -value of all possible classi-

cations Y j and outputs the prediction set 

 Y j : p(Y j ) > δ} , (4)

hich has at most δ chance of not containing the true classifi-

ation of the new unclassified example. In the case where a sin-

le prediction is desired, called forced prediction , instead of a pre-

iction set, CP predicts the classification with the largest p -value,

hich is the most likely classification, together with a confidence

nd a credibility measure for its prediction. The confidence mea-

ure is calculated as one minus the second largest p -value, i.e. the

ignificance level at which all but one classifications would have

een excluded. This gives an indication of how likely the predicted

lassification is compared to all other classifications. The credibility

easure on the other hand, is the p -value of the predicted classifi-

ation. A very low credibility measure indicates that the particular

nstance seems very strange for all possible classifications. In the

articular task of malware detection low credibility would indicate

hat an application behaves differently from all known malicious

nd benign applications. This would signify that the application

ay contain a new type of malware. 

.2. Label-conditional Mondrian Conformal Prediction 

Conformal Prediction guarantees that the prediction sets it pro-

uces will make an error with a probability at most as high as

he preset significance level (one minus the confidence level) over

ll examples. However, it does not guarantee that this will hold

n different categories of examples, i.e. it does not provide the

ame guarantee separately for easy and hard examples. Therefore

t is possible for prediction sets to have a lower than the signif-

cance level frequency of errors on easy examples and a higher

han the significance level frequency of errors on hard examples.

verall one will compensate for the other resulting in the correct

requency of errors. This poses a problem in the case of class im-

alance, which is the case in malware detection as most applica-

ions are benign, especially since the malicious (minority) class is

he most important. 

A modification of the original Conformal Prediction framework,

alled Mondrian Conformal Prediction (MCP) can guarantee that the

esulting prediction sets will be valid within categories. Specifically

CP is given a division of the examples into categories in the form
f a measurable function that assigns a category κ i to each exam-

le z i . This function is called a Mondrian taxonomy . MCP then cal-

ulates the p -values of the examples in each category separately

hus ensuring that validity will hold within each category. 

A special case of MCP is the Label-conditional MCP (LCMCP),

n which the category of each example is determined by its la-

el/classification. In this case the p -value of each possible classi-

cation Y j of the test example x l+1 is calculated with the function

p(Y j ) = 

|{ i = 1 , . . . , l : y i = Y j & α
Y j 
i 

≥ α
Y j 
l+1 

}| + 1 

|{ i = 1 , . . . , l : y i = Y j }| + 1 

, (5) 

nstead of (2) . Now the prediction set (4) will make an error with

 probability at most δ regardless of the true classification of the

xample. Note that in this case we can also use a different signif-

cance level for each classification and produce the prediction set

 

Y j : p(Y j ) > δ j 

} 

, (6)

here δ1 , . . . , δc are the significance levels corresponding to each

lassification respectively. Forced prediction is calculated in the

ame way described in Section 2.1 but using the p -values produced

y (5) . 

.3. Label-conditional Mondrian Inductive Conformal Prediction 

The transductive nature of the original CP framework, includ-

ng LCMCP, means that all computations have to start from scratch

or every new test instance. Obviously this is too computationally

emanding for a mobile phone application. For this reason the pro-

osed approach follows the inductive version of the framework,

alled Inductive Conformal Prediction (ICP), which only performs

ne training phase to generate a general rule with which it can

hen classify new examples with minimal processing. 

Specifically, ICP divides the training set (of size l ) into the

roper training set with m < l examples and the calibration set with

 := l − m examples. It then uses the proper training set for train-

ng the underlying algorithm (only once) and the examples in the

alibration set for calculating the p -value of each possible classi-

cation of the new test example. In effect, after training the un-

erlying algorithm on the proper training set the non-conformity

cores αm +1 , . . . , αm + q of the calibration set examples are calcu-

ated. Then to calculate the p -value of each possible classification

 j ∈ { Y 1 , . . . , Y c } of a new test example x l+1 , ICP only needs to cal-

ulate the non-conformity score of the pair (x l+1 , Y j ) using the

lready trained underlying algorithm and compare it to the non-

onformity scores of the calibration set examples with the function

p(Y j ) = 

|{ i = m + 1 , . . . , m + q : αi ≥ α
Y j 
l+1 

}| + 1 

q + 1 

. (7) 

In the case of the Label-conditional Mondrian ICP (LCMICP) fol-

owed here, the nonconformity score of the pair (x l+1 , Y j ) is com-

ared to the nonconformity scores of the instances in the calibra-

ion set with classification Y j instead of all instances. In particular,

his comparison is performed with the function 

p(Y j ) = 

|{ i = m + 1 , . . . , m + q : y i = Y j & αi ≥ α
Y j 
l+1 

}| + 1 

|{ i = m + 1 , . . . , m + q : y i = Y j }| + 1 

. (8) 

otice that the steps that need to be repeated for each test exam-

le have almost negligible computational requirements. Again the

rediction sets and forced prediction outputs are calculated in the

ame way as LCMCP. 
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Table 1 

Recorded features divided into categories. 

Category Features 

Battery IsCharging, Voltage, Temp, Level, LevelDiff

Binder Transaction, Reply, Acquire, Release, ActiveNodes, 

TotalNodes, ActiveRef, TotalRef, ActiveDeath, TotalDeath, 

ActiveTransaction, TotalTransaction, 

ActiveTransactionComplete, TotalTransactionComplete, 

TotalNodesDiff, TotalRefDiff, TotalDeathDiff, 

TotalTransactionDiff, TotalTransactionCompleteDiff

CPU User, System, Idle, Other 

Memory Active, Inactive, Mapped, FreePages, AnonPages, FilePages, 

DirtyPages, WritebackPages 

Network TotalTXPackets, TotalTXBytes, TotalRXPackets, 

TotalRXBytes, TotalTXPacketsDiff, TotalTXBytesDiff, 

TotalRXPacketsDiff, TotalRXBytesDiff

Permissions TotalPermissions 
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1 Available online at: https://androidzoo.uni.lu . 
3. Proposed approach 

In this study, LCMICP was combined with Random Forests (RF)

as underlying algorithm. The RF classifier consisted of 100 decision

trees trained on different bootstrap samples of the proper train-

ing set with a randomly selected subset of attributes; the num-

ber of attributes selected for each tree was equal to the square

root of the number of total attributes. RF was implemented using

the TreeBagger class of the Matlab statistics and machine learning

toolbox [22] . 

When given an instance x i to classify, a trained decision tree h t 
produces the posterior probability ˆ P t (Y j | x i ) for each classification

Y j , defined as the number of training instances with classification

Y j that lead to the same node as x i divided by the total number

of training instances that lead to that node. The RF classifier aver-

ages the posterior probabilities produced by all its decision trees

to produce the posterior probability 

ˆ P (Y j | x i ) = 

1 

T 

T ∑ 

t=1 

ˆ P t (Y j | x i ) , (9)

where T is the number of decision trees in the RF ensemble. In this

work the classification task is binary, therefore Y j ∈ {0, 1} and two

probabilistic values are produced: ˆ P (0 | x i ) and 

ˆ P (1 | x i ) . 
The nonconformity measure used for the proposed RF-LCMICP

is 

α
Y j 
i 

= 1 − ˆ P (y i | x m + i ) , i = 1 , . . . , q, (10a)

α
Y j 
l+1 

= 1 − ˆ P (Y j | x l+1 ) , (10b)

where ˆ P (y i | x i ) is the RF posterior probability for the true classifi-

cation of x i and 

ˆ P (Y j | x l+1 ) is the RF posterior probability for the

assumed class Y j ∈ {0, 1} of x l+1 . 

The complete process followed by the proposed approach is de-

tailed in Algorithm 1 . Lines 1 to 5 correspond to the training

Algorithm 1: Binary RF-LCMICP. 

Input : proper training set { (x 1 , y 1 ) , . . . , (x m 

, y m 

) } , 
calibration set { (x m +1 , y m +1 ) , . . . , (x m + q , y m + q ) } , 
test example x l+1 , ensemble size T , significance level δ

1 H = h 1 , . . . , h T ← train the RF classifier on 

{ (x 1 , y 1 ) , . . . , (x m 

, y m 

) } ; 
2 for i = 1 to q do 

3 { ̂  P (0 | x m + i ) , ˆ P (1 | x m + i ) } ← H(x m + i ) ; 
4 αm + i ← 1 − ˆ P (y m + i | x m + i ) ; 
5 end 

6 { ̂  P (0 | x l+1 ) , ˆ P (1 | x l+1 ) } ← H(x l+1 ) ; 

7 for Y j = 0 to 1 do 

8 α
Y j 
l+1 

← 1 − ˆ P (Y j | x l+1 ) ; 

9 p( j) = 

|{ i = m +1 , ... ,m + q : y i = Y j & αi ≥α
Y j 
l+1 

}| +1 

|{ i = m +1 , ... ,m + q : y i = Y j }| +1 
; 

10 end 

Output : 

11 Prediction set R ← 

{ 

Y j : p(Y j ) > δ
} 

. 

phase that needs to be performed only once. This phase trains

the RF on the proper training set (line 1) and calculates the non-

conformity score of each calibration example x m + i , i = 1 , . . . , q, by

inputing it to the trained RF to obtain the probabilistic outputs
ˆ P (0 | x m + i ) and 

ˆ P (1 | x m + i ) (line 3) and using them in (10a) to cal-

culate αm + i (line 4). The testing phase, lines 6 to 11, is the only

part that needs to be repeated for every new instance. This phase
btains the probabilistic outputs of the trained RF for the new in-

tance (line 6) and then for each possible class, it calculates the

orresponding nonconformity score with (10b) in line 8 and uses

t together with the nonconformity scores of the calibration exam-

les in (8) to calculate the p -value of the new instance belonging

o that class (line 9). Finally, in line 11, it outputs the prediction

et (4) . 

. Data collection 

For evaluating the proposed approach a dataset was generated

y installing Android application files ( .apk ) on a LG E400 Android

evice and recording its states while running them and simulat-

ng user interaction. Specifically, the examined .apk files were ob-

ained from the AndroZoo collection of android applications 1 of the

niversity of Luxembourg, which has analyzed each application by

tilizing several anti-malware tools in order to classify them as

alicious or benign. Our dataset consists of state recordings for

682 applications from the aforementioned collection, of which

866 are malicious and 4816 are benign. The data recorded for

ach application include Binder, Battery, Memory, CPU, Network,

nd Permission information similarly to [23] . Table 1 presents all

he recorded features. Here it is important to note that the Battery

elated data was not considered in our experiments, due to the fact

hat the smartphone device was continually charging. Addition-

lly all Diff related features (Binder: TotalNodesDiff, TotalRefDiff,

otalDeathDiff, TotalTransactionDiff, TotalTransactionCompleteDiff;

nd Network: TotalTXPacketsDiff, TotalTXBytesDiff, TotalRXPackets-

iff, TotalRXBytesDiff) were not used in our experiments as they

an be derived from other features (see the feature combinations

n Subsection 5.1 ). 

The data collection was performed by selecting the .apk files

n a random order, snuffling in this way the malicious and be-

ign applications being installed. For each .apk file, the state of

he smartphone device was recorded before and while simulating

andom user interactions with the application using the Android

adb-monkey ” tool. For the simulated user interaction 1200 touch

vents were performed with an interval of 450ms while the state

f the smartphone device was recorded every 5s. At the end of

he interaction the application was terminated and uninstalled. For

voiding interference among the effects caused by applications on

he state of the device a one minute delay was applied between re-

oving an application and initiating the process for the next one.

dditionally, the device was restarted after recording data for five

pplications. 

https://androidzoo.uni.lu


H. Papadopoulos et al. / Neurocomputing 280 (2018) 3–12 7 

 

a

5

5

 

p  

i

 

 

 

 

 

 

 

 

s

 

i  

f  

e  

[

 

a  

e  

i  

c  

t  

n  

i  

f  

s  

f  

c  

m  

c  

c  

9  

i  

t  

w  

c

 

d  

t  

t  

a  

o  

i

5

 

i  

d  

Table 2 

Forced prediction performance of the RF-LCMICP and conventional RF when mali- 

cious applications make up 25% of the training set. 

Technique Feature Accuracy Sensitivity Specificity F 1 -score 

Set (%) (%) (%) 

Mean 73.70 73.93 73.48 0.7374 

MeanDiff 76.79 76.94 76.63 0.7681 

RF- MedianDiff 76.94 77.30 76.58 0.7702 

LCMICP MinDiff 74.51 74.85 74.17 0.7458 

MaxDiff 71.12 71.03 71.20 0.7107 

Std 73.77 73.95 73.59 0.7380 

Mean 67.23 39.85 94.62 0.5482 

MeanDiff 69.92 45.06 94.78 0.5993 

Convent. MedianDiff 70.42 46.15 94.70 0.6090 

RF MinDiff 67.61 41.46 93.77 0.5610 

MaxDiff 62.63 29.44 95.82 0.4403 

Std 66.52 37.22 95.82 0.5260 

Table 3 

Forced prediction performance of the RF-LCMICP and conventional RF when mali- 

cious applications make up 10% of the training set. 

Technique Feature Accuracy Sensitivity Specificity F 1 -score 

Set (%) (%) (%) 

Mean 71.83 72.42 71.24 0.7197 

MeanDiff 73.73 74.23 73.22 0.7384 

RF- MedianDiff 73.95 74.70 73.20 0.7412 

LCMICP MinDiff 72.22 72.51 71.94 0.7228 

MaxDiff 67.23 67.67 66.79 0.6734 

Std 70.90 71.61 70.18 0.7108 

Mean 54.02 8.60 99.43 0.1571 

MeanDiff 56.01 12.65 99.38 0.2228 

Convent. MedianDiff 56.60 13.90 99.30 0.2421 

RF MinDiff 52.80 5.99 99.60 0.1122 

MaxDiff 52.12 4.46 99.78 0.0850 

Std 54.54 9.53 99.54 0.1729 
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The data collected for each application (and .apk file names) are

vailable at: https://github.com/harrisp/malware-data . 

. Experimental results 

.1. Data preprocessing and experimental setting 

In our experiments we combined the data collected for each ap-

lication into one set of features by calculating each feature value

n six different ways: 

• Mean: The mean of all values collected during interaction with

the application. 

• MeanDiff: The difference between Mean and the previous state

of the device. 

• MedianDiff: The difference between the median of all values

collected during interaction and previous state of the device. 

• MinDiff: The difference between the minimum of all values col-

lected during interaction and the previous state of the device. 

• MaxDiff: The difference between the maximum of all values

collected during interaction and the previous state of the de-

vice. 

• Std: The standard deviation of all values collected during inter-

action. 

Note that in all cases each application corresponds to one in-

tance in the dataset, unlike the dataset used in [23] . 

The performance of the proposed RF-LCMICP approach and of

ts underlying RF technique was examined on each of the six

eature sets individually with an ensemble of 100 trees. Before

ach experiment all input features were normalized to the range

0,1]. 

We performed two groups of experiments varying the percent-

ge of malicious applications in the training set to examine the

ffect of class imbalance to the results. In both groups of exper-

ments the test set was comprised of 300 benign and 300 mali-

ious applications selected randomly from the collected data. The

raining set in the first group of experiments consisted of 4500 be-

ign and 1500 malicious applications while in the second group

t consisted of 4500 benign and 500 malicious applications, there-

ore malicious applications made up 25% and 10% of the training

et respectively. In the case of RF-LCMICP, the calibration set was

ormed by randomly selecting 20% of the training examples of each

lass minus one so that the denominator in Eq. (8) would be a

ultiple of 100. Specifically, in the first group of experiments the

alibration set consisted of 899 benign and 299 malicious appli-

ations, while in the second group it consisted of 899 benign and

9 malicious applications. It is worth noting that in all our exper-

ments the conventional RF technique was trained on the whole

raining set, unlike the underlying model of the RF-LCMICP, which

as trained on the smaller set resulting from the removal of the

alibration instances. 

All experiments were repeated 100 times with different ran-

omly selected instances (without replacement) for both forming

he training and test sets and dividing the training sets into proper

raining and calibration sets. The results reported here are the

verage values over the 100 repetitions. This ensured that the

btained results are not dependent on a particular allocation of

nstances. 

.2. Forced prediction 

Our first set of experiments evaluates the proposed technique

n terms of forced predictions. That is when the RF-LCMICP pre-

icts the most likely classification together with a confidence and
redibility measure to that classification. Tables 2 and 3 report the

ccuracy, sensitivity, specificity and F 1 -score of the proposed ap-

roach and its underlying technique for each feature set when the

alicious application instances compose 25% and 10% of the train-

ng set respectively. 

The results in these two tables show that the conventional RF

echnique is highly biased towards the benign class and this bias

reatly increases when the proportion of malicious instances is re-

uced. This is evident from the huge difference between its sensi-

ivity and specificity values as well as the very low F 1 -scores. On

he contrary, the sensitivity and specificity values of the proposed

pproach are very close and are not affected by the degree of class

mbalance. Of course the performance of RF-LCMICP is lower in

able 3 , but this is expected since it has less malicious training

xamples to learn from. 

In terms of the six different feature sets, it seems that Mean-

iff and MedianDiff give the best performance. It is also evident

y comparing the performances when using the Mean and Mean-

iff features that taking into account the state of the device before

unning the application is beneficial. 

It is worth to point out that in addition to providing unbiased

redictions, the main advantage of the proposed approach is that it

lso accompanies these predictions with confidence and credibility

easures, something that is not evident in the results reported so

ar. These measures can help identify the cases where predictions

re likely to be wrong and cases that seem very different from the

raining data indicating the possibility of a new malware kind. The

alidity and quality of the outputs produced by RF-LCMICP are the

ubject of the rest of this Section. 

https://github.com/harrisp/malware-data
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Fig. 1. Empirical validity of the RF-LCMICP on the malicious (minority) class and on the benign (majority) class separately. Each pane plots the error percentage of the 

positive instances with a solid line, the error percentage of the negative instances with a dashed line and the diagonal (exact validity) with a dotted line. 
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5.3. Empirical validity 

As the provision of unbiased guarantees is a major motivation

of this work, this subsection examines the empirical validity of the

proposed RF-LCMICP and compares it to that of the probabilistic

outputs produced by the conventional RF technique. The proba-

bilistic outputs of conventional RF were converted to prediction

sets by including in each prediction set the classification with the

highest probability and adding the other classification with a prob-

ability (1 − δ − ˆ p (Y j | x i )) / ̂  p (Y k | x i ) , where 1 − δ is the required con-

fidence level, Y j is the classification with the highest probability

and Y k is the other classification. Consequently on average the sum

of the probabilities included in the resulting prediction sets is 1 − δ
and thus, given the true conditional probabilities, these prediction

sets will contain the true classification with a probability 1 − δ. 
Fig. 1 plots the error percentages of the prediction sets pro-

uced by RF-LCMICP for the malicious (minority) instances and the

enign (majority) instances. In order to avoid showing extremely

imilar figures for the different feature sets, we selected the two

est performing sets (MeanDiff and MedianDiff) and the worst per-

orming set (MaxDiff) so as to show that empirical validity is not

ffected by the quality of the features used. The two top plots cor-

espond to the MeadDiff set, the two middle plots correspond to

he MedianDiff set and the two bottom plots correspond to the

axDiff set. For each feature set the plots on the left correspond

o the training sets with 25% malicious instances, while the plots

n the right correspond to the training sets with 10% malicious in-

tances. In each plot the solid line is the error percentage on mali-

ious instances, the dashed line is the error percentage on benign

nstances and the dotted line represents the diagonal, i.e. where
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Fig. 2. Empirical validity of the conventional RF technique on the malicious (minority) class and on the benign (majority) class separately. Each pane plots the error per- 

centage of the positive instances with a solid line, the error percentage of the negative instances with a dashed line and the diagonal (exact validity) with a dotted line. 
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he error rate is equal to the significance level δ (exact validity).

n all cases both the solid and the dashed lines are very close to

he diagonal. This shows that the produced prediction sets make

rrors on malicious and benign instances with the same frequency,

hich is equal to the required significance levels. Additionally this

s not affected by the degree of class imbalance in the data. The

nly difference is a small deviation of the benign error percentages

rom the diagonal at significance levels near 1 in the more imbal-

nced cases, but the prediction sets remain valid as the errors be-

ome less than the corresponding significance levels. Moreover this

nly happens at significance levels above 0.9 corresponding to con-

dence levels below 1%, which are of no practical interest. Over-

ll this figure confirms empirically that the RF-LCMICP guarantees

ithin class validity regardless of the quality of the data used or

he degree of imbalance. 
Fig. 2 plots the error percentages for the probabilistic outputs

f the conventional RF technique in the same manner and for the

ame sets of features. Unlike the plots of Fig. 1 , the error per-

entages on the malicious (minority) instances are higher than

he corresponding significance levels while the errors on the be-

ign (majority) instances are lower. This shows once again the

ias of conventional RF towards the benign (majority) class. Ad-

itionally the difference increases in the case of the MaxDiff fea-

ures and in the right plots when the class imbalance is higher.

t is also evident that even when considering all instances to-

ether the error percentages will be higher than the correspond-

ng significance level since on an equal number of malicious

nd benign test instances the deviation of the solid line from

he diagonal is bigger than the opposite deviation of the dashed

ine. 
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Table 4 

OU-criterion for the RF-LCMICP when malicious 

applications make up 25% of the training set. 

Feature Observed Unconfidence 

Set All Malicious Benign 

Mean 0.1788 0.1771 0.1806 

MeanDiff 0.1530 0.1504 0.1556 

MedianDiff 0.1521 0.1497 0.1546 

MinDiff 0.1765 0.1743 0.1788 

MaxDiff 0.2260 0.2248 0.2272 

Std 0.1832 0.1817 0.1846 

Table 5 

OU-criterion for the RF-LCMICP when malicious 

applications make up 10% of the training set. 

Feature Observed Unconfidence 

Set All Malicious Benign 

Mean 0.2115 0.2060 0.2170 

MeanDiff 0.1903 0.1855 0.1952 

MedianDiff 0.1877 0.1825 0.1930 

MinDiff 0.2089 0.2037 0.2140 

MaxDiff 0.2736 0.2685 0.2786 

Std 0.2261 0.2201 0.2321 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

N-criterion (average prediction set size) for the RF-LCMICP when ma- 

licious applications make up 25% of the training set. 

Feature Confidence Level (1 - δ) 

Set 95% 90% 85% 80% 

Mean 1.5790 1.3918 1.2528 1.1380 

MeanDiff 1.5422 1.3391 1.1958 1.0799 

All MedianDiff 1.5345 1.3394 1.1954 1.0770 

Instances MinDiff 1.5898 1.3846 1.2416 1.1246 

MaxDiff 1.6966 1.5093 1.3493 1.2132 

Std 1.5905 1.4022 1.2590 1.1406 

Mean 1.5889 1.4068 1.2638 1.1441 

MeanDiff 1.5319 1.3294 1.1903 1.0762 

Malicious MedianDiff 1.5199 1.3270 1.1877 1.0744 

Instances MinDiff 1.6105 1.4018 1.2511 1.1285 

MaxDiff 1.6523 1.4661 1.3208 1.1991 

Std 1.5671 1.3832 1.2439 1.1317 

Mean 1.5691 1.3769 1.2418 1.1320 

MeanDiff 1.5524 1.3488 1.2012 1.0836 

Benign MedianDiff 1.5492 1.3519 1.2032 1.0796 

Instances MinDiff 1.5692 1.3674 1.2320 1.1207 

MaxDiff 1.7408 1.5525 1.3778 1.2274 

Std 1.6139 1.4213 1.2741 1.1496 

Table 7 

N-criterion (average prediction set size) for the RF-LCMICP when ma- 

licious applications make up 10% of the training set. 

Feature Confidence level (1–δ) 

Set 95% 90% 85% 80% 

Mean 1.6709 1.4613 1.3181 1.1949 

MeanDiff 1.6328 1.4215 1.2747 1.1473 

All MedianDiff 1.6293 1.4162 1.2718 1.1471 

Instances MinDiff 1.6722 1.4665 1.3140 1.1841 

MaxDiff 1.7609 1.5820 1.4330 1.3021 

Std 1.6999 1.4 96 8 1.3489 1.2200 

Mean 1.6274 1.4456 1.3118 1.1893 

MeanDiff 1.5780 1.3968 1.2595 1.1386 

Malicious MedianDiff 1.5738 1.3837 1.2500 1.1353 

Instances MinDiff 1.6469 1.4554 1.3089 1.1833 

MaxDiff 1.7096 1.5339 1.3957 1.2761 

Std 1.6400 1.4615 1.3260 1.2041 

Mean 1.7145 1.4770 1.3243 1.2005 

MeanDiff 1.6876 1.4463 1.2899 1.1559 

Benign MedianDiff 1.6 84 9 1.4488 1.2936 1.1590 

Instances MinDiff 1.6974 1.4776 1.3191 1.1850 

MaxDiff 1.8123 1.6301 1.4702 1.3282 

Std 1.7599 1.5322 1.3717 1.2359 
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One can appreciate the important consequences that the bias

towards the benign class shown in Fig. 2 can have. It would mean

mistakenly considering a malicious application as benign with high

confidence while the opposite is true, therefore providing false se-

curity to the user. 

5.4. Quality of p-values 

This subsection evaluates the quality of the p -values produced

by RF-LCMICP and therefore the informativeness of its outputs. In

effect we would like the p -values of the incorrect classes to be

as low as possible, which will lead to the incorrect class being

excluded from the resulting prediction sets as soften as possible

and to higher confidence measures for the true class in the case

of forced predictions. This evaluation is performed following two

of the probabilistic criteria recently proposed in [24] . The first is

a δ-free and observed criterion, meaning that it does not depend

on the significance level δ and that it takes into account the true

classes of instances. This is the observed unconfidence criterion (OU-

criterion), which is the mean of the incorrect class p -values regard-

less of the classification assigned by the technique. The second cri-

terion is a δ-dependent and prior criterion, meaning that it depends

on the significance level δ and that it does not take the true classes

of instances into consideration. This is the average size of the re-

sulting prediction sets for each significance level, defined as the

N-criterion in [24] . Since the error rates of prediction sets are guar-

anteed this criterion evaluates the size that these sets need to have

in order to satisfy the required significance level. 

Table 4 reports the values of the OU-criterion for all instances

(first column) as well as for the malicious and benign instances

separately (second and third column) with each of the six sets of

features when 25% of the training set instances were malicious.

Table 5 reports the same values for the training set with higher

class imbalance - with only 10% of instances being malicious. In

both tables the values for the malicious and benign instances are

very close, indicating that there is no bias towards one or another.

As expected performance worsens when having less malicious in-

stances to learn from, but the values remain balanced. Comparing

the values of the different sets of features one can see that the

MeanDiff and MedianDiff perform better than the others, which is

consistent with their performance in Tables 2 and 3 . The observed
nconfidence values of these two feature sets correspond to an av-

rage confidence close to 85% to the correct class and this includes

he cases where the forced prediction is wrong. This means that

uite a few of the malicious applications can be detected with a

onfidence higher than 85%. 

Tables 6 and 7 report the N-criterion values for the confidence

evels of 95%, 90%, 85% and 80% (corresponding to δ set to 0.05,

.1, 0.15 and 0.2) for the training sets made up of 25% and 10%

alicious instances respectively. These tables are divided into three

arts: the top part reports the average prediction set sizes obtained

or all instances together, while the middle and bottom parts re-

ort the average prediction set sizes for the malicious and be-

ign instances separately. Each part contains the average sizes of

he prediction sets obtained with each of the six sets of features.

s expected, lowering the required level of confidence results in

maller prediction sets as it allows a higher error rate. The same

bservations with those from Tables 4 and 5 also apply here: (i)

here is no bias towards benign or malicious instances and this

s not affected by the feature set used or the degree of class im-

alance, (ii) the best performing feature sets are MeanDiff and
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edianDiff. Considering the complexity of the particular task, re-

ected by the values reported in Tables 2 and 3 , the average pre-

iction set sizes obtained with the two best performing feature

ets are arguably a good result. With 95% confidence (allowing only

% errors) we can be sure for close to half of the applications about

hether they are malicious or benign. Lowering the required con-

dence level results in smaller sizes, with the 80% confidence level,

hich is still higher than the obtained accuracy, resulting in an av-

rage prediction set size close to 1. 

. Conclusions 

We propose a machine learning approach for Android malware

etection that unlike conventional machine learning based mal-

are detection techniques produces confidence measures in each

f its predictions, which are guaranteed to be valid for malicious

nd benign instances separately. The proposed approach is based

n the combination of the Mondrian and Inductive versions of the

onformal Prediction framework, which produces provably valid

onfidence measures that have a clear probabilistic interpretation

ithout assuming anything more than i.i.d. data. 

The proposed approach was evaluated on a large dataset of

tate recordings obtained by installing a variety of malicious and

enign applications on a real android device, thus making the data

s close to a realistic setting as possible. Additionally, six differ-

nt ways of combining the state recordings taken before and dur-

ng interaction with each application were examined in an effort

o identify the best one. The collected dynamic analysis data are

ade available at: https://github.com/harrisp/malware-data . 

Our experimental results on the collected data show that the

roposed approach gives predictions that are unbiased towards

alicious or benign applications regardless of the degree of class

mbalance in the training data, unlike its underlying technique.

urthermore, they demonstrate empirically the within class valid-

ty of LCMICP, which means that one can effectively control the

requency of errors on malicious and benign instances separately.

n the contrary, the probabilistic predictions produced by the con-

entional RF technique were shown to be highly biased and there-

ore misleading. Finally, the confidence measures and prediction

ets produced by the proposed RF-LCMICP approach were shown

o be quite informative with an average confidence close to 85% in

he correct class and an average prediction set size close to 1 at

he 80% confidence level. 

Given the complexity of the particular task considering the

arge variety of both malicious and benign applications and the

ncontrolled environment of a real Android device, it is naturally

xpected that some applications are difficult to detect. As shown

y our experimental results, the proposed approach can provide an

nbiased estimate on the degree to which a given detection can be

xpected to be correct, enabling a user to take informed decisions

n whether to remove an application or not, depending on the risk

e/she is willing to take. Specifically, in a practical usage scenario

he user could set a threshold on his/her acceptable confidence for

n application not being malicious (i.e. a threshold on the p -value

f the malicious class) and if the chance of an application being

alicious exceeds that threshold, the user could be notified and

resented with the classification and confidence values for it, en-

bling him/her to decide on removing it or not. 

Our immediate future plans include the examination of feature

election and of more complex ways of combining the collected

eatures. Furthermore, the collection and examination of additional

eatures, possibly including static analysis data, is another future

oal. 
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